170 research outputs found

    Delayed union of femoral fractures in older rats:decreased gene expression

    Get PDF
    BACKGROUND: Fracture healing slows with age. While 6-week-old rats regain normal bone biomechanics at 4 weeks after fracture, one-year-old rats require more than 26 weeks. The possible role of altered mRNA gene expression in this delayed union was studied. Closed mid-shaft femoral fractures were induced followed by euthanasia at 0 time (unfractured) or at 1, 2, 4 or 6 weeks after fracture in 6-week-old and 12-15-month-old Sprague-Dawley female rats. mRNA levels were measured for osteocalcin, type I collagen α1, type II collagen, bone morphogenetic protein (BMP)-2, BMP-4 and the type IA BMP receptor. RESULTS: For all of the genes studied, the mRNA levels increased in both age groups to a peak at one to two weeks after fracture. All gene expression levels decreased to very low or undetectable levels at four and six weeks after fracture for both age groups. At four weeks after fracture, the younger rats were healed radiographically, but not the older rats. CONCLUSIONS: (1) All genes studied were up-regulated by fracture in both age groups. Thus, the failure of the older rats to heal promptly was not due to the lack of expression of any of the studied genes. (2) The return of the mRNA gene expression to baseline values in the older rats prior to healing may contribute to their delayed union. (3) No genes were overly up-regulated in the older rats. The slower healing response of the older rats did not stimulate a negative-feedback increase in the mRNA expression of stimulatory cytokines

    ?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    Get PDF
    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA

    Occurrence and Treatment of Bone Atrophic Non-Unions Investigated by an Integrative Approach

    Get PDF
    Recently developed atrophic non-union models are a good representation of the clinical situation in which many nonunions develop. Based on previous experimental studies with these atrophic non-union models, it was hypothesized that in order to obtain successful fracture healing, blood vessels, growth factors, and (proliferative) precursor cells all need to be present in the callus at the same time. This study uses a combined in vivo-in silico approach to investigate these different aspects (vasculature, growth factors, cell proliferation). The mathematical model, initially developed for the study of normal fracture healing, is able to capture essential aspects of the in vivo atrophic non-union model despite a number of deviations that are mainly due to simplifications in the in silico model. The mathematical model is subsequently used to test possible treatment strategies for atrophic non-unions (i.e. cell transplant at post-osteotomy, week 3). Preliminary in vivo experiments corroborate the numerical predictions. Finally, the mathematical model is applied to explain experimental observations and identify potentially crucial steps in the treatments and can thereby be used to optimize experimental and clinical studies in this area. This study demonstrates the potential of the combined in silico-in vivo approach and its clinical implications for the early treatment of patients with problematic fractures

    Targeting the CoREST complex with dual histone deacetylase and demethylase inhibitors

    Get PDF
    Here we report corin, a synthetic hybrid agent derived from the class I HDAC inhibitor (entinostat) and an LSD1 inhibitor (tranylcypromine analog). Enzymologic analysis reveals that corin potently targets the CoREST complex and shows more sustained inhibition of CoREST complex HDAC activity compared with entinostat. Cell-based experiments demonstrate that corin exhibits a superior anti-proliferative profile against several melanoma lines and cutaneous squamous cell carcinoma lines compared to its parent monofunctional inhibitors but is less toxic to melanocytes and keratinocytes. CoREST knockdown, gene expression, and ChIP studies suggest that corin's favorable pharmacologic effects may rely on an intact CoREST complex. Corin was also effective in slowing tumor growth in a melanoma mouse xenograft model. These studies highlight the promise of a new class of two-pronged hybrid agents that may show preferential targeting of particular epigenetic regulatory complexes and offer unique therapeutic opportunities

    The Shoulder Pain and Disability Index demonstrates factor, construct and longitudinal validity

    Get PDF
    BACKGROUND: The Shoulder Pain and Disability Index (SPADI) is a self-report measure developed to evaluate patients with shoulder pathology. While some validation has been conducted, broader analyses are indicated. This study determined aspects of cross-sectional and longitudinal validity of the SPADI. METHODS: Community volunteers (n = 129) who self-identified as having shoulder pain were enrolled. Patients were examined by a physical therapist using a standardized assessment process to insure that their pain was musculoskeletal in nature. This included examination of pain reported during active and passive shoulder motion as reported on a visual analogue pain scale. Patients completed the SPADI, the Coping Strategies Questionnaire (CSQ) and the Sickness Impact Profile (SIP) at a baseline assessment and again 3 and 6 months later. Factor analysis with varimax rotation was used to assess subscale structure. Expectations regarding convergent and divergent subscales of CSQ and SIP were determined a priori and analysed using Pearson correlations. Constructed hypotheses that patients with a specific diagnosis or on pain medication would demonstrate higher SPADI scores were tested. Correlations between the observed changes recorded across different instruments were used to assess longitudinal validity. RESULTS: The internal consistencies of the SPADI subscales were high (α > 0.92). Factor analysis with varimax rotation indicated that the majority of items fell into 2 factors that represent pain and disability. Two difficult functional items tended to align with pain items. Higher pain and disability was correlated to passive or negative coping strategies, i.e., praying/hoping, catastrophizing on the CSQ. The correlations between subscales of the SPADI and SIP were low with divergent subscales and low to moderate with convergent subscales. Correlations, r > 0.60, were observed between the SPADI and pain reported on a VAS pain scale during active and passive movement. The two constructed validity hypotheses (on diagnosis and use of pain medications) were both supported (p < 0.01). The SPADI demonstrated significant changes over time, but these were poorly correlated to the SIP or CSQ suggesting that these scales measure different parameters. CONCLUSION: The SPADI is a valid measure to assess pain and disability in community-based patients reporting shoulder pain due to musculoskeletal pathology

    Decisions that hasten death: double effect and the experiences of physicians in Australia

    Get PDF
    BACKGROUND: In Australian end-of-life care, practicing euthanasia or physician-assisted suicide is illegal. Despite this, death hastening practices are common across medical settings. Practices can be clandestine or overt but in many instances physicians are forced to seek protection behind ambiguous medico-legal imperatives such as the Principle of Double Effect. Moreover, the way they conceptualise and experience such practices is inconsistent. To complement the available statistical data, the purpose of this study was to understand the reasoning behind how and why physicians in Australia will hasten death. METHOD: A qualitative investigation was focused on palliative and critical/acute settings. A thematic analysis was conducted on semi-structured in-depth interviews with 13 specialist physicians. Attention was given to eliciting meanings and experiences in Australian end-of-life care. RESULTS: Highlighting the importance of a multidimensional approach, physicians negotiated multiple influences when death was regarded as hastened. The way they understood and experienced end-of-life care practices were affected by politico-religious and cultural influences, medico-legal imperatives, and personal values and beliefs. Interpersonal and intrapsychic aspects further emphasised the emotional and psychological investment physicians have with patients and others. In most cases death occurred as a result of treating suffering, and sometimes to fulfil the wishes of patients and others who requested death. Experience was especially subject to the efficacy with which physicians negotiated complex but context-specific situations, and was reflective of how they considered a good death. Although many were compelled to draw on the Principle of Double Effect, every physician reported its inadequacy as a medico-legal guideline. CONCLUSIONS: The Principle of Double Effect, as a simplistic and generalised guideline, was identified as a convenient mechanism to protect physicians who inadvertently or intentionally hastened death. But its narrow focus on the physician’s intent illuminated how easily it may be manipulated, thus impairing transparency and a physician’s capacity for honesty. It is suggested the concept of “force majeure” be examined for its applicability in Australian medical end-of-life law where, consistent with a multidimensional and complex world, a physician’s motivations can also be understood in terms of the emotional and psychological pressures they face in situations that hasten death

    Mechanisms of MEOX1 and MEOX2 Regulation of the Cyclin Dependent Kinase Inhibitors p21CIP1/WAF1 and p16INK4a in Vascular Endothelial Cells

    Get PDF
    Senescence, the state of permanent cell cycle arrest, has been associated with endothelial cell dysfunction and atherosclerosis. The cyclin dependent kinase inhibitors p21CIP1/WAF1 and p16INK4a govern the G1/S cell cycle checkpoint and are essential for determining whether a cell enters into an arrested state. The homeodomain transcription factor MEOX2 is an important regulator of vascular cell proliferation and is a direct transcriptional activator of both p21CIP1/WAF1 and p16INK4a. MEOX1 and MEOX2 have been shown to be partially functionally redundant during development, suggesting that they regulate similar target genes in vivo. We compared the ability of MEOX1 and MEOX2 to activate p21CIP1/WAF1 and p16INK4a expression and induce endothelial cell cycle arrest. Our results demonstrate for the first time that MEOX1 regulates the MEOX2 target genes p21CIP1/WAF1 and p16INK4a. In addition, increased expression of either of the MEOX homeodomain transcription factors leads to cell cycle arrest and endothelial cell senescence. Furthermore, we show that the mechanism of transcriptional activation of these cyclin dependent kinase inhibitor genes by MEOX1 and MEOX2 is distinct. MEOX1 and MEOX2 activate p16INK4a in a DNA binding dependent manner, whereas they induce p21CIP1/WAF1 in a DNA binding independent manner

    Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study

    Get PDF
    Background: Although pulsed electromagnetic field (PEMF) stimulation may be clinically beneficial during fracture healing and for a wide range of bone disorders, there is still debate on its working mechanism. Mesenchymal stem cells are likely mediators facilitating the observed clinical effects of PEMF. Here, we performed in vitro experiments to investigate the effect of PEMF stimulation on human bone marrow-derived stromal cell (BMSC) metabolism and, specifically, whether PEMF can stimulate their osteogenic differentiation. Methods: BMSCs derived from four different donors were cultured in osteogenic medium, with the PEMF treated group being continuously exposed to a 15 Hz, 1 Gauss EM field, consisting of 5-millisecond bursts with 5-microsecond pulses. On culture day 1, 5, 9, and 14, cells were collected for biochemical analysis (DNA amount, alkaline phosphatase activity, calcium deposition), expression of various osteoblast-relevant genes and activation of extracellular signal-regulated kinase (ERK) signaling. Differences between treated and control groups were analyzed using the Wilcoxon signed rank test, and considered significant when p < 0.05. Results: Biochemical analysis revealed significant, differentiation stage-dependent, PEMF-induced differences: PEMF increased mineralization at day 9 and 14, without altering alkaline phosphatase activity. Cell proliferation, as measured by DNA amounts, was not affected by PEMF until day 14. Here, DNA content stagnated in PEMF treated group, resulting in less DNA compared to control. Quantitative RT-PCR revealed that during early culture, up to day 9, PEMF treatment increased mRNA levels of bone morphogenetic protein 2, transforming growth factor-beta 1, osteoprotegerin, matrix metalloproteinase-1 and-3, osteocalcin, and bone sialoprotein. In contrast, receptor activator of NF-B ligand expression was primarily stimulated on day 14. ERK1/2 phosphorylation was not affected by PEMF stimulation. Conclusions: PEMF exposure of differentiating human BMSCs enhanced mineralization and seemed to induce differentiation at the expense of proliferation. The osteogenic stimulus of PEMF was confirmed by the up-regulation of several osteogenic marker genes in the PEMF treated group, which preceded the deposition of mineral itself. These findings indicate that PEMF can directly stimulate osteoprogenitor cells towards osteogenic differentiation. This supports the theory that PEMF treatment may recruit these cells to facilitate an osteogenic response in vivo. © 2010 Jansen et al; licensee BioMed Central Ltd
    corecore